
Chomsky Classification of GrammarsChomsky Classification of Grammars

According to Noam Chomosky, there are four types of grammars − Type 0, Type 1, Type 2, and Type 3. The following table shows how theyAccording to Noam Chomosky, there are four types of grammars − Type 0, Type 1, Type 2, and Type 3. The following table shows how they
differ from each other −differ from each other −

Grammar TypeGrammar Type Grammar AcceptedGrammar Accepted Language AcceptedLanguage Accepted AutomatonAutomaton

Type 0Type 0 Unrestricted grammarUnrestricted grammar Recursively enumerable languageRecursively enumerable language Turing MachineTuring Machine

Type 1Type 1 Context-sensitive grammarContext-sensitive grammar Context-sensitive languageContext-sensitive language Linear-bounded automatonLinear-bounded automaton

Type 2Type 2 Context-free grammarContext-free grammar Context-free languageContext-free language Pushdown automatonPushdown automaton

Type 3Type 3 Regular grammarRegular grammar Regular languageRegular language Finite state automatonFinite state automaton

Take a look at the following illustration. It shows the scope of each type of grammar −Take a look at the following illustration. It shows the scope of each type of grammar −

Type - 3 GrammarType - 3 Grammar
Type-3 grammarsType-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side
consisting of a single terminal or single terminal followed by a single non-terminal.consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form The productions must be in the form X → a or X → aYX → a or X → aY

where where X, Y ∈ NX, Y ∈ N (Non terminal) (Non terminal)

and and a ∈ Ta ∈ T (Terminal) (Terminal)

The rule The rule S → εS → ε is allowed if is allowed if SS does not appear on the right side of any rule. does not appear on the right side of any rule.

ExampleExample

X → ε X → ε
X → a | aYX → a | aY

Y → b Y → b

Type - 2 GrammarType - 2 Grammar
Type-2 grammarsType-2 grammars generate context-free languages. generate context-free languages.

The productions must be in the form The productions must be in the form A → γA → γ

where where A ∈ NA ∈ N (Non terminal) (Non terminal)

and and γ ∈ (T ∪ N)*γ ∈ (T ∪ N)* (String of terminals and non-terminals). (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

ExampleExample

S → X a S → X a
X → a X → a
X → aX X → aX
X → abc X → abc
X → εX → ε

Type - 1 GrammarType - 1 Grammar
Type-1 grammarsType-1 grammars generate context-sensitive languages. The productions must be in the form generate context-sensitive languages. The productions must be in the form

α A β → α γ βα A β → α γ β

where where A ∈ NA ∈ N (Non-terminal) (Non-terminal)

and and α, β, γ ∈ (T ∪ N)*α, β, γ ∈ (T ∪ N)* (Strings of terminals and non-terminals) (Strings of terminals and non-terminals)

The strings The strings αα and and ββ may be empty, but may be empty, but γγ must be non-empty. must be non-empty.

The rule The rule S → εS → ε is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a
linear bounded automaton.linear bounded automaton.

ExampleExample

AB → AbBc AB → AbBc
A → bcA A → bcA
B → b B → b

Type - 0 GrammarType - 0 Grammar
Type-0 grammarsType-0 grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar
including all formal grammars.including all formal grammars.

They generate the languages that are recognized by a Turing machine.They generate the languages that are recognized by a Turing machine.

The productions can be in the form of The productions can be in the form of α → βα → β where where αα is a string of terminals and nonterminals with at least one non-terminal and is a string of terminals and nonterminals with at least one non-terminal and αα cannot be cannot be
null. null. ββ is a string of terminals and non-terminals. is a string of terminals and non-terminals.

ExampleExample

S → ACaB S → ACaB
Bc → acB Bc → acB
CB → DB CB → DB
aD → Db aD → Db

