Chomsky Classification of Grammars

According to Noam Chomosky, there are four types of grammars — Type 0, Type 1, Type 2, and Type 3. The following table shows how they
differ from each other —

Grammar Type Grammar Accepted Language Accepted Automaton
Type O Unrestricted grammar Recursively enumerable language Turing Machine
Type 1 Context-sensitive grammar Context-sensitive language Linear-bounded automaton
Type 2 Context-free grammar Context-free language Pushdown automaton
Type 3 Regular grammar Regular language Finite state automaton

Take a look at the following illustration. It shows the scope of each type of grammar -

I ——
"

/ﬂ:ur&ively Enumerable

. \
I."f Context-Sensitive HH.I
| R |
| / \ |

1 |
\ | Context - Free
- |
| Regulh

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side
consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form X — a or X — a¥Y
where X, Y € N (Non terminal)
and a € T (Terminal)

The rule S — ¢ is allowed if S does not appear on the right side of any rule.
Example

X = €
X > a | aY

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form A — y

where A € N (Non terminal)

and y € (T U N)* (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

Example

X a
a
aX
abc

X X X X n
2 A T 2

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must be in the form
aAB—ayp

where A € N (Non-terminal)

and a, B,y € (T U N)* (Strings of terminals and non-terminals)

The strings a and 8 may be empty, but y must be non-empty.

The rule S — ¢ is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a
linear bounded automaton.

Example

AB - AbBc
A > bcA
B->b

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar
including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of a — B where a is a string of terminals and nonterminals with at least one non-terminal and a cannot be
null. B is a string of terminals and non-terminals.

Example

S » ACaB
Bc » acB
CB -» DB
aD » Db

