Chomsky Classification of Grammars

According to Noam Chomosky, there are four types of grammars – Type 0, Type 1, Type 2, and Type 3. The following table shows how they differ from each other –

Grammar Type	Grammar Accepted	Language Accepted	Automaton
Туре 0	Unrestricted grammar	Recursively enumerable language	Turing Machine
Туре 1	Context-sensitive grammar	Context-sensitive language	Linear-bounded automaton
Туре 2	Context-free grammar	Context-free language	Pushdown automaton
Туре 3	Regular grammar	Regular language	Finite state automaton

Take a look at the following illustration. It shows the scope of each type of grammar -

Type - 3 Grammar

Type-3 grammars generate regular languages. Type-3 grammars must have a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal or single terminal followed by a single non-terminal.

The productions must be in the form $X \to a \ or \ X \to aY$

where $X, Y \in N$ (Non terminal)

and $a \in T$ (Terminal)

The rule $\boldsymbol{S} \to \boldsymbol{\epsilon}$ is allowed if \boldsymbol{S} does not appear on the right side of any rule.

Example

X → ε X → a | aY

Type - 2 Grammar

Type-2 grammars generate context-free languages.

The productions must be in the form $\textbf{A}\rightarrow \textbf{\gamma}$

where $A \in N$ (Non terminal)

and $\gamma \in (T \cup N)^*$ (String of terminals and non-terminals).

These languages generated by these grammars are be recognized by a non-deterministic pushdown automaton.

Example

 $\begin{array}{rrrr} S & \rightarrow & X & a \\ X & \rightarrow & a \\ X & \rightarrow & a X \\ X & \rightarrow & a b c \\ X & \rightarrow & \epsilon \end{array}$

Type - 1 Grammar

Type-1 grammars generate context-sensitive languages. The productions must be in the form

 $\alpha \mathrel{\textbf{A}} \beta \to \alpha \mathrel{\textbf{\gamma}} \beta$

where $A \in N$ (Non-terminal)

and α , β , $\gamma \in (T \cup N)^*$ (Strings of terminals and non-terminals)

The strings α and β may be empty, but γ must be non-empty.

The rule $S \rightarrow \epsilon$ is allowed if S does not appear on the right side of any rule. The languages generated by these grammars are recognized by a linear bounded automaton.

Example

```
\begin{array}{l} \mathsf{AB} \ \rightarrow \ \mathsf{AbBc} \\ \mathsf{A} \ \rightarrow \ \mathsf{bcA} \\ \mathsf{B} \ \rightarrow \ \mathsf{b} \end{array}
```

Type - 0 Grammar

Type-0 grammars generate recursively enumerable languages. The productions have no restrictions. They are any phase structure grammar including all formal grammars.

They generate the languages that are recognized by a Turing machine.

The productions can be in the form of $\alpha \rightarrow \beta$ where α is a string of terminals and nonterminals with at least one non-terminal and α cannot be null. β is a string of terminals and non-terminals.

Example

S → ACaB		
Bc → acB		
$CB \rightarrow DB$		
aD → Db		